105 research outputs found

    A BIM-based theoretical framework for the integration of the asset End-of-Life phase

    Get PDF
    Due to the migration of industry from the use of traditional 2D CAD tools to Building Information Modelling (BIM) process, and the growing awareness of Construction and Demolition (C&D) waste issues, researchers are interested in compiling the use of BIM for C&D Waste issues. BIM is commonly used for the Design, Construction and Maintenance phases of an asset; however, the use of BIM for the End-of-Life management is still in its infancy. This paper proposes to reconsider the asset lifecycle by incorporating a sustainable End-of-Life, as a phase, in BIM context. Recommendations are given to push the BIM potential up to the asset End-of-Life management. Based on the results of a literature review assessing the current use of BIM for the asset End-of-Life, a conceptual framework was drawn. A set of eleven stakeholders, involved in the asset lifecycle, from inception to deconstruction were interviewed to improve the conceptual framework. The research reveals the impacts and barriers for the integration of the deconstruction phase into the asset lifecycle. Consequently, a theoretical framework for the asset lifecycle from inception to deconstruction in BIM environment is created to change the linear system to a circular economy.Peer reviewe

    Achieving sustainable construction within Private Finance Initiative (PFI) road projects in the UK

    Get PDF
    The construction industry is facing the challenge of increasing demands of its sustainability performance. The construction and maintenance of the built environment has substantial impact on the sustainability of the environment. Whist, public sector clients are increasingly asking for a sustainable approach in their specification and procurement decisions, sustainability is still seen as a novel concept within the construction industry in many parts of the world without a settled definition. The premise of this study is that the interaction between road projects realized by the private finance initiative and their delivery in the UK improve sustainability. The paper, based on case study research, explains the sustainability implementation in a PFI road project and demonstrates that the PFI mechanism facilitates sustainable implementation to a far greater extent than is achievable using traditional procurement methods

    Intelligent Software for Ecological Building Design

    Get PDF
    Building design is a complex process because of the number of elements and issues involved and the number of relationships that exist among them. Adding sustainability issues to the list increases the complexity of design by an order of magnitude. There is a need for computer assistance to manage the increased complexity of design and to provide intelligent collaboration in formulating acceptable design solutions. Software development technology today offers opportunities to design and build an intelligent software system environment that can serve as a reliable intelligent partner to the human designer. In this paper the authors discuss the requirements for an intelligent software design environment, explain the major challenges in designing this environment, propose an architecture for an intelligent design support system for sustainable design and present the existing technologies that can be used to implement that architecture

    Incorporation of Sustainability Concepts into a Civil Engineering Curriculum

    Full text link

    A framework to move forward on the path to eco-innovation in the construction industry: implications to improve firmsÂŽ sustainable orientation

    Full text link
    This paper examines key aspects in the innovative behavior of the construction firms that determine their environmental orientation while innovating. Structural equation modeling was used and data of 222 firms retrieved from the Spanish Technological Innovation Panel (PITEC) for 2010 to analyse the drivers of environmental orientation of the construction firms during the innovation process. The results show that the environmental orientation is positively affected by the product and process orientation of construction firms during the innovation process. Furthermore, the positive relation between the importance of market information sources and environmental orientation, mediated by process and product orientation, is discussed. Finally, a model that explains these relations is proposed and validated. Results have important managerial implications for those companies worried about their eco-innovative focus as the types of actions and relations within firms most suitable for improving their eco-innovative orientation are highlighted.The authors would like to thank the Spanish Economy and Competitiveness Ministry for its support through the research project (EC02011-27369) and also the Universitat Politecnica de Valencia (SP20140647).Segarra Oña, MDV.; PeirĂł Signes, A.; CervellĂł Royo, RE. (2015). A framework to move forward on the path to eco-innovation in the construction industry: implications to improve firmsÂŽ sustainable orientation. Science and Engineering Ethics. 21(6):1469-1484. https://doi.org/10.1007/s11948-014-9620-2S14691484216Amara, N., & Landry, R. (2005). Sources of information as determinants of novelty of innovation in manufacturing firms: evidence from the 1999 statistics Canada innovation survey. Technovation, 25(3), 245–259.Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two- step approach. Psychological Bulletin, 103(3), 411–423.Ang, G. K. I. (2004). Competing revaluing construction paradigms in practice. Rotterdam: CIB.Audet, R., & Guyonnaud, M. F. (2013). Transition in practice and action in research. A French case study in piloting eco-innovations. Innovation: The European Journal of Social Science Research, 26(4), 398–415.Bagozzi, R., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 18(1), 74–94.Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least square (PLS) approach to causal modelling: Personal computer adoption and use as an illustration. Technology Studies, Special Issue on Research Methodology, 2(2), 285–309.Barrett, P. (2007). Revaluing construction: A holistic model. Building Research and Information, 35(3), 268–286.Barrett, P., & Lee, A. (2005). Revaluing construction: A CIB priority theme, Salford Centre for Research and Innovation. Salford/CIB: University of Salford, Rotterdam.Beamon, B. M. (2005). Environmental and sustainability ethics in supply chain management. Science and Engineering Ethics, 11(2), 221–234.Burciu, A., Bostan, I., Condrea, P., & Grosu, V. (2010). Financing the environmental policies in the communitarian space. Environmental Engineering and Management Journal, 9(9), 1179–1185.Carrascosa-LĂłpez, C., PeirĂł-Signes, Á., & Segura-GarcĂ­a-del-RĂ­o, B. (2012). Does it pay to be greener than legislation? An empirical study of spanish tile industry. Journal of Sustainable Development, 5(5), 17–26.Carter, T., & Fowler, L. (2008). Establishing green roof infrastructure through environmental policy instruments. Environmental Management, 42(1), 151–164.CervellĂł-Royo, R., Garrido-Yserte, R., & Segura-GarcĂ­a del RĂ­o, B. (2012). An urban regeneration model in heritage areas in search of sustainable urban development and internal cohesion. Journal of Cultural Heritage Management and Sustainable Development, 2(1), 44–61.Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–358). New Jersey: Lawrence Erlbaum Associates.Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modelling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic mail emotion/adoption study. Information Systems Research, 14(2), 189–217.Commission, European. (2004). Facing the challenge: The Lisbon strategy for growth and employment Brussels. Brussels: European Comission.Commission of the European Communities (2006). Action Plan for Energy Efficiency: Realising the Potential, Brussels. http://ec.europa.eu/energy/action_plan_energy_efficiency/doc/com_2006_0545_en.pdf . (Accessed 31/01/2014).Courtney, R., & Winch, G. (2002). CIB strategy for re-engineering construction. Rotterdam: CIB.Courtney, R., & Winch, G. M. (2003). Re-engineering construction: The role of research and implementation. Building Research and Information, 31(2), 172–178.Davis, M. (2001). The professional approach to engineering ethics: Five research questions. Science and Engineering Ethics, 7, 379–390.Ding, G. K. C. (2008). Sustainable construction. The role of environmental assessment tools. Journal of Environmental Management, 86(3), 451–464.Du Plessis, C., & Cole, R. J. (2011). Motivating change: Shifting the paradigm. Building Research and Information, 39(5), 436–449.Esty, D. C., & Winston, A. S. (2006). Green to gold, how smart companies use environmental strategy to innovate, create value, and build competitive advantage. Hoboken: Wiley.European Commission (2010) Europe 2020: A strategy for smart, sustainable and inclusive growth, Brussels.Falk, R., & Miller, N. (1992). A primer on soft modelling. Akron: The University of Akron Press.Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 328–388.Freeman, R. E. (1994). The politics of stakeholder theory: Some future directions. Business Ethics Quarterly, 4(4), 409–422.GĂĄzquez-Abad, J. C., Huertas-GarcĂ­a, R., VĂĄzquez-GĂłmez, M. D., & Romeo, A. C. (2014). Drivers of sustainability strategies in Spain’s wine tourism industry. Cornell Hospitality Quarterly, 1938965514549657.Gebauer, H., Gustafsson, A., & Witell, L. (2011). Competitive advantage through service differentiation by manufacturing companies. Journal of Business Research, 64(12), 1270–1280.Geisser, S. (1975). A predictive approach to the random effect model. Biometrika, 61(1), 101–107.GonzĂĄlez-Benito, O., & GonzĂĄlez-Benito, J. (2008). Implications of market orientation on the environmental transformation of industrial firms. Ecological Economics, 64(4), 752–762.Henseler, J., Ringle, C., & Sinkovics, R. (2009). The use of partial least square path modelling in international marketing. In I. Rudolf, R. Sinkovics & N. Pervez (Eds.), Advance in international marketing (Vol. 20, pp. 277–319).Hill, S., & Lorenz, D. (2011). Rethinking professionalism: Guardianship of land and resources. Building Research and Information, 39(3), 314–319.Huedo, P., & Lopez-Mesa, B. (2013). Review of tools to assist in the selection of sustainable building assemblies. Informes de la ConstrucciĂłn, 65(529), 77–88.IPCC. (2007a). Climate change 2007: The physical science basis. summary for policymakers: Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.IPCC. (2007b). Mitigation. contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.Jensen, J. S., Gottlieb, S. C., & Thuese, C. L. (2011). Construction sector development: Frames and governance responses. Building Research and Information, 39(6), 665–667.Kibert, Ch J. (2007). The next generation of sustainable construction. Building Research & Information, 35(6), 595–601.Kim, Y., Brodhag, C., & Mebratu, D. (2014). Corporate social responsibility driven innovation. Innovation: The European Journal of Social Science Research, 27(2), 175–196.Kuhn, S. (2001). Commentary on: The greening of engineers: A cross-cultural experience. Science and Engineering Ethics, 7(1), 123–124.Lam, P. T., Chan, E. H., Chau, C. K., Poon, C. S., & Chun, K. P. (2011). Environmental management system vs green specifications: How do they complement each other in the construction industry? Journal of Environmental Management, 92(3), 788–795.Leimeister, S., Leimeister, J. M., & Knebel, U. (2009). A cross-national comparison of perceived strategic importance of RFID for CIOs in Germany and Italy. International Journal of Information Management, 29(1), 37–47.Leman, A., & Bordass, B. (2007). Are users more tolerant of green buildings? Building Research and Information, 35(6), 662–673.Liefferink, D., & Andersen, M. S. (1998). Strategies of the green member states in EU environmental policy-making. Journal of European Public Policy, 5(2), 254–270.Losada, B. (2013). Smart cities through the smart grid: The sustainable smart city and its energy dependence. DYNA, 88(2), 154–155.Luetzkendorf, T. (2010). Sustainable properties-dream or trend? Informes de la ConstrucciĂłn, 61(517), 5–15.LĂŒtzkendorf, T., & Lorenz, D. (2007). Integrating sustainability into property risk assessments for market transformation. Building Research and Information, 35(6), 644–671.Matthyssensa, P., & Vandenbempt, K. (2008). Moving from basic offerings to value-added solutions: Strategies, barriers and alignment. Industrial Marketing Management, 37(3), 316–328.McKeiver, C., & Gadenne, D. (2005). Environmental management systems in small and medium business. Small Business Journal, 23(5), 513–537.Nunnally, J. C., & Bernstein, I. H. (1995). TeorĂ­a psicomĂ©trica. MĂ©xico: McGraw-Hill.Parsa, H. G., Segarra-Oña, M., Jang, S. S., Chen, R., & Singh, A. J. (2014). Special issue on sustainable and eco-innovative practices in hospitality and tourism. Cornell Hospitality Quarterly, 55(1), 5–5.Pearce, D. (2006). Is the construction sector sustainable? Building Research and Information, 34(3), 201–207.PeirĂł-Signes, A., Miret-Pastor, L. L., Segarra-Oña, M. V., & De Miguel Molina, B. (2013). Analysing the determinants of better performance through eco management tools at the food industry: An empirical study. In P. Golinska (Ed.), Eco Production and logistics (pp. 73–90). Heidelberg: Springer.PeirĂł-Signes, A., Verma, R., MondĂ©jar-JimĂ©nez, J., & Vargas-Vargas, M. (2014). The impact of environmental certification on hotel guest ratings. Cornell Hospitality Quarterly, 55(1), 40–51.Petruzzelli, A. M., Dangelico, R. M., Rotolo, D., & Albino, V. (2011). Organizational factors and technological features in the development of green innovations: Evidence from patent analysis. Innovation: Management, Policy and Practice, 13(3), 291–310.Porter, M. E., & Kramer, M. R. (2006). Strategy and society: The link between competitive advantage and corporate social responsibility. Harvard Business Review, 84(12), 78–92.Porter, M. E., & Van der Linde, C. (1995). Toward a new conception of the environment competitiveness relationship. Journal of Economic Perspectives, 9(4), 97–118.Rennings, K. (2002). Redefining innovation—Eco-innovation research and the contribution from ecological economics. Ecological Economics, 32(2), 319–332.Rennings, K., Ziegler, A., Ankele, K., & Hoffman, E. (2006). The influence of different characteristics of the eu environmental management and auditing scheme on technical environmental innovations and economic performance. Ecological Economics, 57(1), 45–59.Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0 M3. http:// www.smartpls.de .SĂĄnchez-Ollero, J. L., GarcĂ­a-Pozo, A., & Marchante-Mera, A. (2013). How does respect for the environment affect final prices in the hospitality sector? A hedonic pricing approach. Cornell Hospitality Quarterly, 55, 31–39.Schmidt, V. A., & Radaelli, C. M. (2004). Policy change and discourse in Europe: Conceptual and methodological issues. West European Politics, 27(2), 183–210.Segarra-Oña, M.D.V., M.PeirĂł-Signes, Á., Verma, R., & Miret-Pastor, L. (2012). Does environmental certification help the economic performance of hotels? Evidence from the spanish hotel industry. Cornell Hospitality Quarterly, 1938965512446417.Segarra-Oña, M. V., PeirĂł-Signes, A., Albors-GarrigĂłs, J., & Miret-Pastor, P. (2011). Impact of innovative practices in environmentally focused firms: Moderating factors. International Journal of Environmental Research, 5(2), 425–434.Segarra-Oña, M. D. V., PeirĂł-Signes, A., & MondĂ©jar-JimĂ©nez, J. (2013). Identifying variables affecting the proactive environmental orientation of firms: An empirical study. Polish Journal of Environmental Studies, 22(3), 873–880.Sharma, A., Thomas, D., & Konsynski, B. (2008). Strategic and institutional perspectives in the evaluation, adoption and early integration of radio frequency identification (RFID): An empirical investigation of current and potential adopters. Proceedings of the 41st Hawaii international conference on system science, Waikoloa, Big Island, Hawaii, USA (pp 407–420).Sigala, M. (2014). Customer involvement in sustainable supply chain management a research framework and implications in tourism. Cornell Hospitality Quarterly, 55(1), 76–88.Song, M., Peng, J., Liu, W., & An, Q. (2014). A PSBM model for environmental efficiency evaluation and its application. Polish Journal of Environmental Studies, 23(3), 893–900.Stern, N. (2006). The economics of climate change: The stern review. Cambridge: Cambridge University Press.Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36, 111–147.Stone, G. W., & Wakefield, K. L. (2000). Eco-orientation: An extension of market orientation in an environmental context. Journal of Marketing Theory and Practice, 8(3), 21–31.Tenenhaus, M., Vinzi, V., Chatelin, J., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.Tse, R. Y. (2001). The implementation of EMS in construction firms: Case study in Hong Kong. Journal of Environmental Assessment Policy and Management, 3(2), 177–194.Turner, R. K. (2006). Sustainability auditing and assessment challenges. Building Research and Information, 34(3), 197–200.Van Bueren, E., & De Jong, J. J. (2007). Establishing sustainability: Policy successes and failures. Building Research and Information, 35(5), 543–556.Vanasupa, L., Chen, K. C., & Slivovsky, L. (2006). Global challenges as inspiration: A classroom strategy to foster social responsibility. Science and Engineering Ethics, 12(2), 373–380.Vastag, G., Kerekes, S., & Rondinelli, D. A. (1996). Evaluation of corporate environmental management approaches: A framework and application. International Journal of Production Economics, 43(2–3), 193–211
    • 

    corecore